
?8 r*-

a; KJ
f-< ^

Q n
CO f-,
w CO

ESD-TR-67-372 MTR-276

A DESCRIPTION OF THE INTERNAL OPERATION

OF THE ADAM SYSTEM

AUGUST 1967

J. A. Clapp

Prepared for

DEPUTY FOR COMMAND SYSTEMS
COMPUTER AND DISPLAY DIVISION

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

This doc umenl has been approved for public

release and sale; its distribution i s un-

limited.

Project 502F
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628>5165

ADO <A05t\

When US Government drawings, specifications, or
other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in
any way supplied the said drawings, specifications,
or other data is not to be regarded by implication
or otherwise, as in any manner licensing the holder
or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

ESD-TR-67-372 MTR-276

A DESCRIPTION OF THE INTERNAL OPERATION

OF THE ADAM SYSTEM

AUGUST 1967

J. A. Clapp

Prepared for

DEPUTY FOR COMMAND SYSTEMS
COMPUTER AND DISPLAY DIVISION

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

This do Lument h as been approved for pu blic
release and so e; its distribi tion i s un-

limited.

Project 502F
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-5165

FOREWORD

This document was prepared by The MITRE Corporation for the Deputy
for Command Systems, Computer and Display Division, of the Electronic
Systems Division, Air Force Systems Command, L. G. Hanscom Field,
Bedford, Massachusetts.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

^ CMARLES A. L&USTRUP, Colonel, USAF
Chief, Computer and Display Division

11

ABSTRACT

This report summarizes the internal operation of the
ADAM system. It describes the organization of functions
among the system routines. Appendix I lists the sizes of
the primary routines. Appendix II describes the internal
format of ADAM files and rolls.

iii

TABLE OF CONTENTS

Page

SECTION 1.0 BASIC OPERATION OF THE ADAM SYSTEM 1

SECTION 2.0 INITIALIZATION AND MODIFICATION 3

2.1 INITIALIZATION 3

2.2 MODIFICATION 5

SECTION 3.0 INPUT-OUTPUT 8

3.1 INPUT MESSAGES 8

3.2 DISPLAY INPUTS 12

3.3 OUTPUT MESSAGES 13

SECTION 4.0 TASK CONTROL 14

SECTION 5.0 TASK PROCESSING 17

5.1 TYPES OF TASKS 17

5.2 MESSAGE PROCESSING ROUTINES 17

5.3 THRUPUT PROCESSING ROUTINES 18

5.4 DISPLAY INPUT PROCESSING ROUTINES 20

SECTION 6.0 DYNAMIC STORAGE ALLOCATION 22

6.1 CORE MEMORY ALLOCATION 22

6.2 DISK ALLOCATION 26

SECTION 7.0 FILE AND ROLL PROCESSING ROUTINES 27

7.1 FILE PROCESSING ROUTINES 27

7.2 ROLL PROCESSING ROUTINES 30

SECTION 8.0 LANGUAGE PROCESSORS 33

8.1 DAMSEL 33

8.2 LAP 33

8.3 COMFORT MONITOR AND POSTPROCESSOR 33

TABLE OF CONTENTS (CONTINUED)

Page

APPENDIX I SIZES OF PRIMARY ADAM ROUTINES 35

APPENDIX II DESCRIPTION OF FORMATS OF ADAM FILES AND
ROLLS 38

vi

SECTION 1.0

BASIC OPERATION OF THE ADAM SYSTEM

Figure 1 shows the basic behavior of the ADAM system which

operates as a single job in the job queue of MCP, the moni-

tor control program of the IBM 7030. After the system is

•ready' (see time t) it operates under user control based

on input messages which may be entered on-line via input

devices or off-line as a part of his job deck. Each phase

of operation is discussed briefly in the following sections

in terms of the general flow of control and data and the

names of the primary routines involved. This is intended

to orient the reader in a general way to the internal

organization of the ADAM system.

^u

TU

a

2
0)

3 S
.2

Si IS

oo
c

pH

01
on

<u ij re
-r4 .* 3 to
■ana.«
a a c aj
X H M £

0 P 2 -H u a.

2 3 9

hi OO
X o ' x> re
«•HO CJ in
ig hi hi I • t/i
H a a r~* 01 ■i.

in E -r4 • 01 h. >■ 01 • 01
4-1 to ty *-» h. 00 00 U-l 01

4- a re x 0> c CO O h.
Q. 3 U 00 4-1 tn ■i-4 ä) 2 ' ; hi •H 0) •-4 in CO 00 l- hi l-i • «1 £ H w 0) B
hi 01 T3 ■H a.<-> 01 B -4 hi 01
1 4J 0) x M-i E o en 5? 4- c *-l 4-1 O O V 0 u-i en
C -H •o u 00 hi 0 0» to

>P4 c d <n re a 01 4-1 W

c
C a) 2 •r4

in
CO r--l

oo o
C hi 5 1

co tn 01 •H co- *J

o M X B a en „ E
U 4J c CO 0) o 00 10 01 ÖD 0
01 •r-f 00-H U-4 re 01 X- c: *
-U Q) ty « n £ o n U 4-1 •H U-l
U- I 3 X oo in 3 in o AJ

CO T3 co in 00 O hi in 3 £ tn o> ^ c E O- 4-1 c—
T) .-4 01 in E in ■^4 hi •H a. E
01 O u 01 R) in U-l u-i co t3 4J <u i x K E 4-1 XJ en O O 4J C 3 z.
3 hi
in C

en
H tu x to

01
u C

en
C

•H O

01 o 1) O 4J » o 0 c c hi U-l

hi o E CO c -4 •H 0) s- ° 4J to Q a. 4-1 4-1 X 3

2
2

C U-l U-l a oi 5 01 01 4-1 hi 01
o o 0 •H T> X 01 1-1 t*l hi hi
•H 01 -H hi ft O.r-4 2| 4-1 OJ

ID 00
hi
01

0 o to
01 Ol

0
UJ

E
o § 2

U C
oi to
a x

X n -a oi
u

H4 H C

o
X

o

U-l

O 4J
c

«4-1 0
0

the U4
<

o u X O O 0) •o • 0 o u O a;
hi X oi m

CO 4-1 CJ 01 JS oi *a .£
to E e in E eo

•^ o c Ol 4J ■r4 •H CO • t g *te
HUB O CO H H[4 1N o

**] | <f ir « r^
4-1 4J hi u 4- > k

E
0)

<4-l

hi
0 01 Q> W 1 O

O U-l X
4-1

01
X -I (TJ tV* u

c Ul W CN tU
0 4-1 in o >. tn 1 •r4 •H 4J hi X V 41 01 • *J r: Q. S OO oo CO

4-1 s s 3 00 -v n» «
c 3 u C 41 tn to tn
o a. •,-4 i-4 hi •H 4-1 u w w .

10 4J
-i tu

4-1

3
C

14-1

-a 4J

01
4-1

B

4-1 CO
■M CJ &i^ i —

3 U c •r4 hl 4J O 4-1
h. o o> 4-1 £ 0 c oi re to s-

u a. 3 CJ BO Q> *H 2 1J
o o 0. -o •i-l P C 4J - <T c c ^ P

o u •H >~l hi
C 3
O Ol

•r4 rt 5 fl
•»»•

to
to 01 01

01
4J iL

H C >. c H to •H c no c
u X 0 • (U 13 X -H CO •r4

rj CO ■r4 01 00 OJ HE«
C to M ■o 4J • oc eg m

(0 V

in

01 O
a. 4-i 4J

re S
a
n .21 §

o
i-4

a
3

t-l
.—i 01

4J
in

in
01 1 8 CM 01

■O C 4-1

c o i-i «I u >. E hi oi re
60-H £

•H

CO hi b SJI ga o o. •
4J a 4J C "■* 8 04J 01

x c 4-1 ■H a. 00 W u 00 eo hi hi

u 0 d C c hi oi -^ c tO 4-1 >, u
r-(U •-4 M en ■r4 •r4 en «i-l 41 C 4-1

E O -H V «J 14-1 3 r-i en
"$ U-l

o
c ^ re re m CJ hi
o • re h. U-l O 01 01 u-i o *a

(2 •r4 X 4-1 Hi a 01 00 01 O .* -r-< Oi

H a> 4J o CL to eo o tn hi
00

01 c
re
M

Äl o 4-1
a.

en hi
in Cu

4-1 eo D.
Q. H in

! 5
H U

01
a
o S 01

o

• 01
w E tu
p 00

•H hi
01 01
cj • X

OJ

hi

< V) < Ol
hi

hi » eo
4-i *u in

01 00 of
u c •*<

in

tw £ 14-1 C oi to •H X
o sC o • 144 O m 41 U-l to 00

\s en 0 U to x C in u-i d
7

ttt 01

4-1 4-1 01 01 o T4

♦ I hi 3
CO Pu I j: u hi

eo 0 Ol
01 U
6 on

■r4 U O

to
CO

U X 4J C •H eo hi > 41

1 Ul u Kl -H H H a o H Cu C U

o r-4 CNI CO

4-1 4-1 4-1 4-1

SECTION 2.0

INITIALIZATION AND MODIFICATION

2.1 INITIALIZATION

When the ADAM system is not being operated, it exists as a

system tape containing a core image and data to be stored on the

disk. Data in the ADAM system is organized into two basic struc-

tures: files and rolls. Rolls are dictionaries or directories

containing names and values related to the names. Almost all

of the routines and data of the ADAM system are contained in

the files and rolls which are stored on tape. For example,

there is a routine file which contains binary images of the

routines which comprise the ADAM system.

When an ADAM job starts, the deck which is used contains a

tape reading routine called TWRT which reads a specific tape

IOD and expects a specific format. It reads one file and

transfers control to a location in the last record.

The next set of routines to operate are BS1 and BS2. Together

they read from tape and generate a core image containing

initialized versions of routines, and store on the disk the

data for files and rolls. BS1 and BS2 routines may be used

whenever the ADAM system is loaded from tape, e.g., on recovery

from an error or under user control via an input message.

Following system generation, control is given to IPLCAD .

IPLOAD is primarily a card loading routine. It can load binary

cards and octal correction cards. In this way locations in

core memory can be modified. In addition, IPLOAD reads and

interprets special control cards as follows:

(1) T L0AD,RF1LE ---

This is a command to load a specific routine from

the routine file into core memory. IPLOAD calls on

CLOD, the ADAM system routine loader to perform the

loading.

(2) T END —

This is a command to give control to a specified

location in memory where, hopefully, there is a

routine to be executed. The command can also specify

parameters for the routine. In this way the user

may operate various routines before starting the

ADAM Operating System.

(3) T OUT ---

This command specifies a device and a message to be

sent to that device and IPLOAD causes the transmis-

sion of the message.

(4) T LOAD3GO

This command causes transfer of control to TIP first

to read any control cards for off-line messages and

process them as specified (see Section on Input-Output)

Then control is given to COP, the task control routine

for the ADAM Operating System. Subsequent to this

command input messages may be processed by the ADAM

system.

IPLOAD may also be used after system operation has

begun by a user message ($RESUME) so that further
card reading may be done.

-4-

(5) T LOAD,READ

This is similar to T LOAD,GO except for the manner

in which the off-line input messages which follow it

are specified. IFLOAD reads the next card, and checks

to see if it contains $CONTINUE. If so, it is sent

to TIP, as an off-line input message. If not, IPLOAD

itself creates a $CONTINUE message which it sends to

TIP. Control is then given to COP for Task Control.

2.2 MODIFICATION

Modification of the ADAM system is usually accomplished by a

command to load a routine and a command to execute it using

control cards described above. Below is a summary of some of

the routines which may be used to modify the system.

2.2.1 DABS

DABS is a routine which reads and writes specified parts of a

data base to and from tape. DABS deals with a data base tape;,

as opposed to a systems tape described earlier. A data base

tape contains images of data to be stored on the disk but no

core images. DABS acts under control of cards in the deck

which are of two basic forms:

T RESTORE ---

which reads and stores on disk the files and rolls which are

on the specified data tape, overwriting the same files or rolls

if they are already in the system.

T SAVE - —

which writes a data tape with the files and rolls specified,

which exist in the ADAM system.

DABS may also be called during system operation via a routine

called USAVE with entry points to save and restore a data base

tape, e.g., DO TSAVE(DATA,5,0) is a FABLE message to save the

list of files and rolls and routines named in the file called

DATA.

2.2.2 RUE

RUE updates and edits the Routine File and its associated

rolls, the Routine Roll and the Compiler Roll. It reads con-

trol cards indicating the name of the routine and the operation

desired (DELETE, ADD, CORRECT) and reads the appropriate cards,

if ADD or CORRECT, which specify the changes. RUE itself is

called by a card beginning

T RUE .

After the Routine File has been updated, subsequent loading of

these routines into core will cause the modified versions to

be loaded.

2.2.3 CHANGER

CHANGER is a routine which is used to make changes to the

language file, which contains, for each language, specifica-

tions of the language diagram (syntax and semantics), the

literals (words which are in the language) and character types

(alphanumeric or punctuation). CHANGER reads cards containing

one or more parts of a language specification and adds to or

modifies the language file. Language specifications of a

diagram and literals may be produced by the LAP routine, an

assembly program which must be operated before the ADAM job

because CHANGER can only accept cards which must be physically

inserted into the ADAM job deck after they are produced by LAP.

-6-

2.2.4 FORUP

FORUP is a routine which adds and replaces formats in the

Format File. It reads cards containing a compiled format

which consists of the format name and binary code for the

format.

2.2.5 DEMON

This routine accepts specifications for message identification

and message monitoring which name the devices to be monitored,

the devices on which monitoring takes place, and the devices

whose messages shall be identified (see Input-Output). DEMON

may also be requested to terminate any such specifications.

SECTION 3.0

INPUT-OUTPUT

3.1 INPUT MESSAGES

Input messages may be entered on-line from a variety of devices

such as a typewriter;, a teletype, pushbuttons and a light pencil.

Inputs may also be entered off-line via messages on punched

cards with control cards indicating the simulated source and

time at which the message is to be entered. The two basic

sources are handled differently. Messages may also be inter-

nally generated by a routine and then processed as if they came

from an external source.

3.1.1 On-Line Input Messages

Input messages from real time devices cause hardware I/O

interrupts. Such interrupts are handled by a system routine

called TOP, which edits the message as follows:

(a) Characters are converted from the code used by the

particular device to A8 code, a standard code used

by routines in the system which subsequently operate

on the message. This makes such routines independent

of the type of input device.

(b) During conversion, ehe message is cleaned up by

removing control characters (carriage return, line

feed) and interpreting backspace and delete codes.

(c) The proper ending character is appended to the

message (i.e., Partial Message or End of Message).

(d) A source code is inserted before the message, indi-

cating the device from which it came.

After TOP has edited the input message it is sent to a routine

called TIP. TIP's primary function in handling on-line input

messages is to collect partial messages and concatenate them

with subsequent message fragments from the same source until

the entire message is received. Each complete message is sent

by TIP to COP, the Task Control routine, to give it a priority

and place it in the Task Queue. (See description of Task

Control below.)

3.1.2 Message Monitoring and Identification

A user may optionally specify message monitoring and/or message

identification for on-line input devices. Message monitoring

means all inputs and/or outputs of a specified device are

reproduced on one or more other output devices, e.g., the inputs

from a remote teletype may be monitored on a printer at SDL and

the outputs to the teletype may be monitored on the same or a

different printer.

Monitoring of input from a device is accomplished as follows:

After editing an input messagejTOP checks its source

against an indicator for that device which tells whether

its input is being monitored. If so, the input is passed,

as usual, to TIP and, in addition, an indicator called

TOPMO$A is set. On sensing that indicator, TIP calls a

fixed routine named TIPSI which calls TOP to send the

message to the monitoring device(s).

Monitoring of outputs is accomplished within TOP by a check to

see if the device to which the message is directed is being

monitored. If so, the message is also sent to the monitoring

device(s).

-9-

Message identification means that each input message from a

specified device or devices is given a unique number. This

number is sent back to the user. If the processing of a mes-

sage results in an error, and the message has been identified

by a number, the number will be included in the error message.

Message identification is accomplished as follows;

After editing an input message, TOP checks its source

against an indicator for that device which tells whether

message identification has been specified. If so, the

input is passed, as usual, to TIP and in addition an

indicator called TOPID$A is set. On sensing that

indicator, TIP calls a fixed routine named TIPID which

calls TOP with a message to the input device containing

the new query number. The number is also stored in the

Task Queue and is available during the processing of

that message.

A routine called DEMON may be called via FABLE to specify or

cancel message identification and message monitoring. It sets

the indicators which TOP senses when inputs and outputs are

received.

3.1.3 Off-line Input Messages

The deck used in an ADAM job may contain a T LOAD,GO card to

start operation of the ADAM system following initialization

and modification. Control is given to TIP, a routine which,

in addition to the functions described in the preceding sections,

also handles off-line input messages. Off-line messages are

each preceded by a control card, called a TIPSIM card. It is

-10-

recognized by TIP from a 1-2-3 punch in column 1. The card

contains a device number, indicating the simulated source of

the message and a simulated present time as well as a time at

which the message should be read. TIP calculates the time

difference and uses it to set the interval timer. If there is

no difference, the time is set to one millisecond. One special

TIPSIM card, the END card, allows TIP to bypass setting the

interval timer since there are no further messages. Any deck

in which there are no off-line messages contains at least a

TIPSIM card with a long delay or a TIPSIM END card.

When the interval timer interrupt occurs, TIP reads cards until

the next TIPSIM control card. All cards between TIPSIM cards

are treated as one message. TIP edits the message as follows:

(1) The message is converted from card code to A8 code.

(2) The device number specified on the TIPSIM card is

inserted before the message.

(3) An End-of-Message is inserted after the message.

TIP then sends the message to COP to be added to the Task Queue.

The next TIPSIM card is then used to set (or not set) the

interval timer before TIP exits.

Another method of entering off-line messages is through the

utility message SCONTINUE and an IPLOAD message T LOAD.BEAD

(see preceding discussion in Section 2.1).

A $CONTINUE message is processed by a subroutine in RULE,, a.

system routine containing subroutines for some of the system

utility message processing. This subroutine reads the cards

containing a message, determines the end of the message (card

has blanks in columns 73-80) and edits the message in exactly

-11-

the same manner as TIP usually does. In this case the device

number is implied from the SCONTINUE card. The subroutine then

sends the message to TIP as an internally generated message

(.see the next section);, and also sends another SCONTINUE message-

to COP so it may again be called to process subsequent off-line

input messages. In this way SCONTINUE causes each message to

be processed before the next message is stacked as input to the

system.

3.1.4 Internally Generated Messages

Any routine may generate a message and by calling TIP, cause

the message to be stored and given to COP for addition to the

Task Queue. The message must be in core. No editing is done

by TIP.

3.2 DISPLAY INPUTS

Light pen and display inputs are handled by a routine called

BURLEQUE. Recognition rules (see Task Control) for these

devices send inputs to BURLEQUE when the l/O-interrupt occurs.

The routine stacks the message segments, since a complete

message may consist of a sequence of display inputs combined

with typewriter inputs.

Special, action sequences are used to terminate the message.

When the terminal action occurs> BURLEQUE calls TIP with the

sequence of inputs as an internally generated message. The

message is stacked at the head of the queue of input messages

and when unstacked, it is processed by a routine called GHOUL

and becomes a typewriter-like message. (See Message Processing.)

-12-

For light pen inputs TOP supplies BURLEQUE with data associated

with the point which was light-penned. This data is in a Light

Pen Input Stream created by the formatting routine.

3.3 OUTPUT MESSAGES

All output messages are sent to TOP along with the identifica-

tion of the device(s) for which they are intended. TOP queries

the messages by device and I/O channel. If the specified chan-

nel and device is free, TOP transmits the message. Whenever

there is an I/O interrupt TOP, checks to see if any device for

which a message is queued has become free and, if so, initiates

the output transmission. TOP rotates among the devices assigned

to a particular channel to provide equal opportunity for all

devices to receive queued output.

TOP edits the output message by transforming the A8 characters

to the character code of the output device and the correct

format required by the hardware. MCP, the 7030 control program)

is used to perform the actual output operations.

Although a device is specified for each output, several output

devices may be slaved to a device. If the slaved devices are

of the. same kind, e.g., two printers, then TOP will only format

the message once and send it to all the slaved devices, thereby

saving time.

-13-

 .

SECTION 4.0

TASK CONTROL

A message becomes a task when it is assigned a priority and a

routine to process it, and is added to a Task Queue. This

process is called message recognition and is performed by a

routine called COP. To 'recognize' a message COP uses sets of

recognition rules which specify parts of the message to be

examined. The rules are arranged as sieves; they are applied

to a message in a given order. When a rule successfully com-

pletes the recognition of the message, that rule also specifies

the priority of the message which designates when (with respect

to other tasks in the system) processing of this task should

begin and specifies the identity or location and input of a

routine to process the message.

The recognition rules are outside of COP and may be dynamically

changed. A fixed location, called RCGRUL$A, points to a control

word for the first set of rules. A control word is an index

word which contains the location of the first rule, the number

of rules and, in its refill field, the location of the control

word for the next set of rules.

A fixed table called RCGRUL contains the recognition rules used

in ADAM. There are three sets. The first set, called SYSTEM

RULES, is intended for rules which are necessary to system

operation. It normally contains only one rule which always

fails so the next set is applied. This next set is called the

USER set and consists of a sequence of rules for each device.

The USER set has a control word per device number pointing to

the location of the rules for that device. There is a set of

rules for typewriter and teletype input and another set for

■14-

light pen and push button input.

The card reader, typewriter and teletype input rules consist

of a set to test for what are called utility messages (see

Task Processing) which are not a part of any input language

defined in the Language File and another rule to test for a

file generation language message.

The third set of rules is called the COMMON set. It is not

indexed by device and contains one rule which is applied when

rules in the USER set fail. It recognizes any message as a

FABLE message.

When the message is recognized, its location and the values

of priority processing routine, entry point, and routine para-

meters from the rule are placed on the cask queue.

There are three kinds of priority:

Immediate: processing of the task should interrupt the

current task. Such a task is called a bypass

task.

Normal: The priority may be an indication chat the

task is put at the top or botcom of the queue.

Tasks are unstacked from the top of the queue.

As a result messages stacked at the top are

unstacked in the reverse order of their receipt

while messages stacked on the botcom are un-

stacked in the order of receipt.

Continue: The task is put on the Continue queue. Tasks

on this queue are only unstacked on the re-

quest of a routine.

■15-

Task processing is initiated by COP whenever a normal task is

completed and the processing routine returns control to COP.

Bypass task processing is initiated when it has been recognized

or at the completion of another bypass task. A bypass task

may only interrupt a normal task.

■16-

SECTION 5.0

TASK PROCESSING

5.1 TYPES OF TASKS

Task Processing begins when COP, the Task Control routine,

gives control to the message processing routine associated

with the input message. Based on priority, there are two kinds

of tasks: Normal and Bypass. A Bypass task is always operated

in autostack mode and is therefore restricted by ADAM conven-

tion for autostacked routines as follows:

A routine which operates while in autostack may not

cause the location of data or routines in core memory

to change. This is necessary so the interrupted task may

proceed without being affected by the Bypass task. As a

result, a Bypass task may not make any new allocations or

request routines not already in core. For this reason

Bypass tasks are reserved for operations which do not

require lengthy or complex processing.

5.2 MESSAGE PROCESSING ROUTINES

There are three groups of message processing routines. The

first group consists of a set of small, relatively simple

subroutines which handle what are called Utility messages.

These subroutines are contained in a routine called RULE and

in the RCGRUL table. A complete list can be found in the

operating instructions of the ADAM system. Examples are $TIME3

which prints the time, and $EOJ which ends an ADAM job.

A second group of processing routines handles display inputs,

i.e., inputs from push buttons and light pens. These include

routines called BURLEQUE and GHOUL.

■17-

A third group of routines, called THRUPUT routines, process

messages in FABLE and File Generation Language which require

translation and execution and generally involve file manipula-

tion. THRUPUT message processing is a normal (as opposed to

Bypass) task.

5.3 THRUPUT PROCESSING ROUTINES

5.3.1 THRUCON

THRUCON is the routine to which COP gives control for a THRUPUT

task. The entry-point number, taken from the recognition rule,

indicates to THRUCON which sequence of routines should be

operated and the routine parameter, also from the recognition

rule, specifies which language is needed. THRUCON is the

THRUPUT control program. It contains a table of task chains

each of which describes in tabular form a sequence of routines

to be operated and the inputs to these routines.

THRUCON prepares for translation by reading the appropriate

language specification into core memory from the LANGUAGE file

and allocates work space which is necessary for communication

between the routines in the selected task chain. THRUCON then

operates each routine. The routines in FABLE and File Genera-

tion Message Processing are described below.

5.3.2 SEPSCAN

SEPSCAN scans the input message character by character using

the specifications for characters kept in the language file

for the language of the message. SEPSCAN is commonly used to

separate alphanumeric strings from punctuation and punctuation

from adjacent punctuation by a single space. Spaces are

-18-

introduced where necessary and eliminated where redundant.

However, the specification for characters may indicate that a

character is to be removed, replaced by another, preceded and

followed by a space, or that successive occurrences of a char-

acter be compressed to one occurrence.

5.3.3 SUBSCAN

Next THRUCON calls SUBSCAN which scans the message for keywords

for which string substitutions have been defined. If any are

found,the message is altered to replace the keywords by their

defined strings.

5.3.A TRANSLAT

TRANSLAT is the Translator. It is functionally divided into

a syntax analyzer and a code generator. The syntax analyzer

compares the language specification provided by THRUCON with

the message and produces a description of the syntactic struc-

ture of the message in the SCAN table, a list of operators

called generators which can transform the message into a

sequence of operations^ and a dictionary called LEX contain-

ing parameters for the generators. These parameters, extracted

from the message, may be constants or values from rolls.

The final output of the generators is a procedure which can be

interpretively operated. This procedure is stored in a stream

called SINTAB which consists of operation codes and parameter

references. The code generator portion of the translator

produces SINTAB. Each generator is a subroutine of the trans-

lator which communicates with other generators via common

storage and calls on a sequence of composers each of which

■19-

constructs one particular kind of SINTAB entry. Associated

with SINTAB is SININ, a stream into which the generators

store parameters for SINTAB code taken from LEX and FALLOUT,

an area used by SINTAB entries for allocation information.

5.3.5 PROCESS

PROCESS is the name of the routine which is called by THRUCON

after translation. It acts as an interpreter which operates

the code in SINTAB. As such, it decodes SINTAB entries and

reformats the parameters as input for system routines which

allocate storage, handle files and rolls^and formats.

5.4 DISPLAY INPUT PROCESSING ROUTINES

5.4.1 BURLEQUE

As described in the section on Input-Output, BURLEQUE receives

light pen, push button and special typewriter inputs. It saves

the sequence of such inputs, checks for an action terminating

the sequence, andjon receiving it^ causes an interrupt. At

that time it calls TIP with an internally generated message

from an imaginary source which will be recognized by the rule

for that source and be placed as a task on the top of the

Normal Task Queue.

5.4.2 GHOUL

The message generated by BURLEQUE is sent to GHOUL. Display

inputs are used in conjunction with entries in the CEMETERY

file. Each entry ic a skeleton message with instructions for

inserting into it,as parameters, the display inputs. The

inputs must identify which skeleton message should be used.

GHOUL retrieves that message and initiates a call to THRUCON

-20-

with a special task chain and language entry. The task chain

consists of SEPSCAN (see above) and STRIPPER (see below). The

message consists of the entry from the CEMETERY file. SEPSCAN

is used to separate punctuation and alphanumeric characters in

the skeleton message according to the rules specified for the

language file for the display language.

5.4.3 STRIPPER

STRIPPER is given the skeleton message and the display inputs.

It scans the message and whenever the message indicates an

action to insert a display input it executes the action. The

fully edited message with its parameters is finally sent to

TIP, in the normal fashion, as a typewriter input.

-21-

SECTION 6.0

DYNAMIC STORAGE ALLOCATION

The resources which are allocated by ADAM system routines are

core memory and disk memory.

6.1 CORE MEMORY ALLOCATION

Core memory is divided into a part at the low-numbered end of

memory which is used for routines, and the remainder which is

used for data. The location of the boundary between the two

parts is stored in LINE$A and may be dynamically moved to meet

the varying demands for each kind of allocation. The primary

differences between routine and data allocation are:

(a) Storage is allocated for routines in 100-word

increments, sometimes called glitches, in a direction

from low to high-numbered locations while storage

is allocated for data in 512 word increments called

pages in the opposite direction.

(b) Once a routine is allocated) it may not move from its

assigned location as long as it is in use, while data

allocations may be moved when subsequent demands for

core allocations occur.

(c) Allocations for data may be made and then increased.

The addition will always be contiguous to the pre-

vious allocation although the entire allocation may

move to a new location.

6.1.1 Routine Allocation

A routine is designated as fixed or alloeatable. Fixed routines

are in core memory at the time ADAM system operation begins

and remain throughout operation unless a utility message

-22-

called $EXFAND is used to remove them. All routines are entries

in the Routine File. When a routine which is being executed

requests another routine to be loaded, a system routine called

CLOD allocates space for it, and performs the necessary reloca-

tion of the code as it is read from the Routine File into the

assigned location. A table called FAT contains allocation

information about the fixed and allocatable routines. The

output to the routine which calls CLOD to load another routine

is the location in FAT assigned to that routine. All alloca-

table routines are accessed through the PAT table. A branch

to the PAT location will branch from there to the routine being

called or to the loader portion of CLOD if the routine has not

yet been loaded.

CLOD may call a subroutine called SPACER in order to request

that LINE$A be moved to allow more room for routine allocation.

A routine which is being executed sets its IN-USE bit in the

PAT entry for itself so that it will not be overwritten. When

a routine finishes with a routine it has requested^ it may

dismiss that routine by setting its DISMISS bit in the PAT

table (or some routines dismiss themselves). CLOD will re-

allocate the space allocated to dismissed routines provided it

is contiguous with other available space adjacent to the loca-

tion in LINE$A, i.e., CLOD will reuse space at the end of its

allocation but not fill in holes within the area available for

routines with new assignments of routines.

6.1.2 Data Allocation

A routine called BASAL handles requests for data storage allo-

cation in core memory. BASAL, in turn, calls on a routine

-23-

named MARASS for the actual assignment of space. A table

called ALLOT contains an entry for each allocation which is

assigned and for each available sequence of one or more pages.

A request for n pages means n consecutive pages. To meet

requests for allocations or increases in allocations, BASAL

and MARASS may change the location of allocations. All routines

which deal with allocatable data space must follow conventions

for addressing that space in order to correctly locate the data,

even if it is dynamically moved. These conventions involve

locating data indirectly through the ALLOT entry which is

always updated when the data moves, and using index registers

which point to data with a special indicator so the index

registers are also updated.

6.1.3 Types of Data Allocation

Allocation of core for data may be made directly through BASAL

or by calling other system routines which understand the kind

of data or the way in which the data will be addressed.

(a) Area

An area is an allocation which is made by specifying

the number of pages needed. Its contents may be

anything the user desires. Areas are allocated by

BASAL.

(b) File Data

Allocation for a file or an entry from a file may be

made by specifying the file and, if desired, the

entry. Allocation of core space is then determined

from the file description. In the case of file data,

allocation also includes reading into core memory the

appropriate parts of the file and, when a user steps

•24-

through a file, refilling the contents of the core

allocation when necessary. BASAL handles allocation

of file data.

(c) Streams

A stream is a disk allocation which may be associated

with a core allocation by 'attaching' it. Stream

handling routines, SHP and STRCON, allow the user to

consider a stream as a single series of addressable

locations even though a small portion of those

locations may actually be in core. SHP and STRCON

call BASAL to make core allocations (and SESCON for

disk allocations) and then handle the movement of

data to and from the disk as the user addresses

locations in the stream.

(d) Rolls

Data for a roll is stored in streams. However

requests for allocation of a roll are made to ROLCON

which determines how much core to allocate based on

the size of the roll, core requirements described

in the Roll Pointer Set for each roll, and the amount

of core space available. ROLCON may also decide

to release space in core occupied by other rolls in

order to satisfy a request when little core space

is available. Users address rolls through ROLCON

and the roll routines since a roll whose streams

are attached may be detached from core without the

user's knowledge. Intormation about the core and

disk assignment of rolls is also contained in the

Roll Pointer Set, which is itself part of a roll,

called $ROLL which contains names and descriptive

data for all rolls.

-25-

6.2 DISK ALLOCATION

SESCON is the ADAM routine in charge of disk allocations. It

accepts requests for a disk allocation of a specified number

of arcs (512 words) and for increases in existing allocations.

Each new allocation is assigned an 'ID' which identifies it.

SESCON also handles disk-to-core and core-to-disk transfers of

data. The user of SESCON specifies the ID of the allocation

and the relative locations he wishes to transfer from or to.

The actual disk arcs are assigned as needed according to which

arcs are available. An allocation may consist of a sequence

of nonconsecutive disk arcs which appear to the user to be

contiguous. SESCON maps the user's addressing into the actual

arc assignments.

■26-

SECTION 7.0

FILE AND ROLL PROCESSING ROUTINES

Data base manipulation involves the processing of data within

the two basic data structures available in ADAM: files and

rolls. To facilitate the manipulation of such data a number

of routines are available. Another form of data manipulation

is performed during file generation in order to transform the

input data into a form suitable for storing in an ADAM file.

7.1 FILE PROCESSING ROUTINES

7.1.1 FILDEF

The FILDEF routine is used to define new files. It performs

two functions. The first creates a new file by assigning it a

disk allocation and adding its description to the roll, called

$FILE, containing names and descriptions of all files in the

system. In addition, it creates a property roll and an object

roll for the file.

The second function adds property descriptions to the property

roll of a file and updates the file description.

FILDEF is designed to operate in the environment of the trans-

lator and hence its input formats conform to the formats of

data available at translation time.

7.1.2 FILGEN

FILGEN is a routine which is used during the processing of input

data for file generation. It performs the necessary operations

to read data from cards or tape and locate positions in the data

corresponding to particular columns or characters. Positions

■27-

may also be located by scanning characters and comparing for

match or nonmatch with one or more specified strings of char-

acters .

FILGEN also handles conversion of character strings for a set

of 'built-in' conversion routines (i.e., not user-supplied)

such as card code to A8 or card decimal to binary.

7.1.3 FILMOD

FILMOD consists of a collection of subroutines which perform

modification of files and if necessary, modification of asso-

ciated rolls and allocations in core and on disk. If a new

entry is added to a file, entry points to FILMOD exist for

functions such as: adding the new object name to the object

roll of the file; allocating core and disk space for the new

entry and initializing its contents; and, adjusting the contents

of the entry, the file descriptions, and the length of the

entry after all data has been stored in it. Another called

ADD REPETITION handles the addition of a repetition by increas-

ing the size of the entry if necessary. Other functions delete

repetitions, delete an object, delete an entire group, and

delete a file.

7.1.4 FETCH AND STORE (FS)

FS is a system routine which fetches a value from a file or

stores a value in a file. The input to FS is a property des-

cription taken from the property roll, and the location in

core memory of the entry or repetition from which a value is

to be fetched, or into which a value supplied as input should

be stored.

-28-

7.1.5 BASAL

Although BASAL is primarily an allocation routine, it performs

additional functions on allocations for file data. BASAL, when

given the PV of a file, will determine the disk location of

file data, the amount of core space required and will read

into core the requested data. Since it is more efficient to

transfer data to and from the disk at arc boundaries, BASAL

will provide the calling routine with the location within the

allocated core of the requested entry since it is not likely

to be the first location. In sequencing through a sequence of

entries in a file or a series of repetitions of an entry, BASAL

may be used to find the absolute location of each entry or

repetition via entry points such as FOR FILE, STEP FILE, FOR RG,

and STEP RG. Because the entire file may not be in core, STEP

FILE may cause refilling of the core allocation from the disk.

This is handled by BASAL automatically.

7.1.6 OUTFOP

OUTFOP is the output formatting routine. Its role as a file

processing routine is to take a format description and a file

and transform the file data into formatted output for a spec-

ified device.

7.1.7 FILCO

The deletion of entries or repetitions from a file by FILMOD

merely sets an indicator to show null data, but the space

originally occupied by the data is still in the file. FILCO

is a housekeeping routine which will compress a file to remove

unused space formerly occupied by deleted entries or repetitions.

■29-

7.1.8 PRESORT and SORTRT

PRESORT sorts the entries of a file on the values of up to 20

properties which are not in a repeating group. SORTRT sorts

the repetitions in the entries of a file on the values of up

to 20 properties in the same repeating group. Both routines

are given the option of producing the sorted version of the

file to replace the original or as a new file.

7.1.9 TALLYRT

TALLYRT is a routine used to tally the values of one or two
9

properties in a file. If a property is arithmetic, the routine

is first called with the ranges for the tally. If a property

is logical, the first 25 values found in the data are tallied.

The routine is initialized with number of properties, types,

and ranges, if any. It is then called with one or two values

at a time (for one-or-two-way tally) and builds either counts

for the tally totals or sums. A final call transfers the

results to a file which may be formatted and presented as

output. TALLYRT is used in ADAM in conjunction with a tally

message in FABLE.

7.2 ROLL PROCESSING ROUTINES

7.2.1 ROLCON

ROLCON is primarily responsible for the allocation of core

memory for rolls and their associated roll routines. When a

user appeals to ROLCON to open a roll, ROLCON allocates space

based on the requirements for that roll, the availability of

core space and the amount of space already occupied by rolls.

If it is not in core, ROLCON will load the roll routine for

that roll. Users are given, by ROLCON, the location of the

-30-

roll routine which will process roll operations on the specified

roll. ROLCON can also read into the core allocation data from

the roll. Other ROLCON functions release the allocation for

specific rolls or all rolls or sufficient rolls to meet a given

request for space from an allocation routine. ROLCON uses

BASAL to allocate the core space.

7.2.2 ROLLR, SROLLR

There are two types of roll structures in general use in the

ADAM system (see 7.2.3 for a third type). To the user of rolls

the interface presented by all routines is the same. Only the

roll routine deals with the roll structure. For a limited

number of rolls which are basic to system operation, called

special rolls, the format consists of a standard roll and an

additional portion called the pointer sat containing subvals

indexed by PV . The three special rolls are the FILES, ROLLS,

and ROUT rolls. Their pointer sets remain in allocatable core

during system operation and are easily accessed. SROLLR is

the roll routine which handles them. ROLLR is the routine

for standard rolls. The basic roll operations are:

LOOKUP which relates a name to PV's and, if specified,

subvals.

EVALUATE which delivers subvals for PV's.

NAME which delivers names for PV's.

UPDATE which has various options for modifying a roll.

1. PV stands for Principal Value, a fixed length integer identifying
the element in the roll associated with an entry of roll data.

-31-

7.2.3 MROLLR

MROLLR is a roll routine used during the file generation of

large amounts of data from tape. When presented with inputs

such as names or subvals, MROLLR saves the roll operation and

values in its input as well as the location in the file where

its output would have been stored. Periodically or when all

input data have been processed, MROLLR processes the list of

roll operations and input parameters which had been saved.

The roll operations are executed in an order which minimizes

the accessing of portions of a roll and the disk transfers of

roll information in order to minimize processing time. Finally,

MROLLR makes one pass through the file to store PV's in their

proper places. Another routine, MRMC, arranges the environment

in which MROLLR operates and restores the environment when

MROLLR is finished. The environment changes include loading

MROLLR over ROLLR and SROLLR.

7.2.4 MIMIC

MIMIC is a routine which copies the contents of a property roll

into another roll. It is used in producing an output file with

the same properties as an existing file .

7.2.5 EXPAND and REDUCE

These two routines handle the subvals of a property in a

property roll. EXPAND separates the packed fields of a subval

into a form which is easier to use. REDUCE takes an expanded

set of values for the fields of a subval and packs them into

the format used in the roll. Many routines which use property

rolls use these routines to simplify handling of subvals.

-32-

SECTION 8.0

LANGUAGE PROCESSORS

8.1 DAMSEL

The DAMSEL compiler is a series of routines which operate

within the ADAM environment to translate a data-base-sensitive

statement language into SMAC code to be assembled by the SMAC

and STRAP assembly programs of the 7030. Because SMAC and

STRAP may not be called by any routine but MCP, it is not pos-

sible to compile a DAMSEL routine in a single job. Instead,

the output of the DAMSEL compiler is a tape of input to a

second job in which SMAC and STRAP operate.

Associated with DAMSEL is a routine called DAR which may be

called when a routine written in DAMSEL language is executed.

It interprets calls to other ADAM system routines by the DAMSEL-

compiled routine.

8.2 LAP

LAP is a routine which accepts language specifications and

produces a binary output for language diagrams and other

associated information. LAP is not compatible with the ADAM

system and must operate as a separate job outside the ADAM

environment.

8.3 COMFORT MONITOR AND POSTPROCESSOR

Routines written in FORTRAN may be operated in the ADAM system

provided the routine includes several special subroutine calls

to make it compatible with ADAM. The binary deck produced by

the FORTRAN compiler must be processed by the COMFORT Post-

processor, a nonsystem compatible routine which revises the

binary deck to a format suitable for inclusion in the ADAM
routine file.

-33-

At execution time the COMFORT Monitor must be loaded before

any FORTRAN routines may be executed. Along with the Monitor,

a table must be loaded containing a list of routines to be

operated. The Monitor loads all routines on the list and

transfers control to the first routine.

■34-

APPENDIX I

SIZES1 OF PRIMARY ADAM ROUTINES

Initialization and Modification

TWRT 24

BS1 615

BS2 825

IPLOAD 1785

DABS 2783

RUE 1484

CHANGER 319

FORUP 318

DEMON 418

USAVE 337

Input-Output

TOP 3438

TIP 880

TIPSI 63

TIPID 52

Task Control

COP 437

RCGRUL 491

Size may include data space as well as executable code.

-35-

Task Processing

RULE 1460

BURLEQUE 448

GHOUL 791

STRIPPER 7873

THRUCON 980

SEPSCAN 274

SUBSCAN 1413

TRANSLAT 9050

PROCESS 1766

Allocation

CLOD 1608

BASAL 1167

MARASS 942

SHP 307

STRCON 549

SESCON 2071

File and Roll Processing

FILDEF 974

FILGEN 1696

FILMOD 1278

FS 208

OUTFOP 3457

FILCO 915

PRESORT 163

SORTRT 2107

TALLYRT 427

ROLCON 481

-36-

File and Roll Processing (Continued)

ROLLR 1745

SROLLR 1439

MROLLR 1792

MRMC 52

MIMIC 335

EXPAND 127

REDUCE 134

Language Processors

DAMSEL 18596

DAR 815

LAP 3050

COMFORT Monitor 1123

COMFORT Preprocessor 550

-37-

APPENDIX II

DESCRIPTION OF FORMATS OF ADAM FILES AND ROLLS

The structure of files in the ADAM system is completely

serial, that is all the data for one object is considered

to be contiguous. The format of a file is shown in

Figure 2. In the following descriptions an asterisk (*)

indicates parts which were not used by the rest of the

system.

1.1 MISCELLANEOUS SECTION

The first section is called MISCELLANEOUS (or MISC). Data

which occurs on a "once per file" basis is stored in a

Miscellaneous section. The Miscellaneous section is

divided into four subsections, and the first four words

are four pointers to the four subsections in the order shown

below. These pointers have the following format:

(a) Each pointer is a full word.

(b) Bits 0-24 of each pointer contain a bit location

in value field format (B,25,l). The remaining

bits may be given different uses in each pointer.

(c) The location is a relative bit location from the

start of the Miscellaneous section.

The pointers are the first four words of MISC, in the

following order: Storage Monitoring, Query-valued*,

Event Detection, and File Properties.

•38-

The four subsections are listed below.

1.1.1 Storage Monitoring

At least two kinds of storage monitoring are controlled

here -- file protected data and event detection.* Each

is 1-bit per property and is indexed by property PV.

There are 4-bits per PV.

1.1.2 Private Query*

These are stored queries which are referenced by query

valued properties in the file.

1.1.3 Event Detection*

These are descriptions of what is to be done in case a

property with a set event detection bit is updated.

1.1.4 Property*

These are user defined "once per file" data. This

subsection is organized like an entry. These properties

are described in the property roll.

1.2 MAIN SECTION

The Main section consists of the entries. The format of

each entry is shown in Figure 2. An entry always starts

at a full word boundary.

1.2.1 Standard Data

A set of properties for each entry. See Figure 3 for the

format and description of these properties.

■39-

1.2.2 Fixed Data

This portion of an entry is the same length for each entry

in a file. It contains values for fixed length properties

which are not in repeating groups (see below) and pointers

to variable length properties.

1.2.3 Variable Data

All variable length values and all data for repeating

groups are stored in the variable data section of an

entry. Pointers to Variable Data from the Fixed Section

include a count of the number of bits being pointed to and

may also indicate the location of a continuation pointer

which, in turn, points to additional data and may also

indicate the location of a continuation pointer. Hence

a variable data property may be stored in groups of

consecutive bits with discontinuities within the data.

The format and use of pointers are described in 1.6 on page 46,

1.2.4 Slop

Slop is between fixed and variable data and allows

expansion of variable data without increasing the size

of entry, and hence dislocating all subsequent entries.

If necessary, however, additional Slop can be obtained.

1.3 FORMATS OF PROPERTY VALUES

Data can, in general, be divided into two types -- Fixed

and Variable.

Fixed data is of a predictable length and therefore has

the same relative position in each entry or repetition.

Fixed data types are:

-40-

POINTERS TO SUBSECTIONS

STORAGE MONITORING SUB-
SECTION ..,,.,,,, i
 Y//////////////////A
PRIVATE QUERY SUBSECTION

k\\\\W\\\\V\\V\\\\
EVENT DETECTION SUBSEC-
TION

"ONCE PER FILE" PROPERTY
SUBSECTION - FIXED -

-SLOP-

-VARIABLE-

STANDARD DATA

J"
FIXED DATA

"SLOP"

VARIABLE
DATA

o
1-1
f»

H- rro
D It

rf 0)
=r a
H- a
en i-t re
Ci rn
H- O)
>1 a>
n 01
n
rr H-
H- 3
o O
3 i-l

It
0)
en
It

Format of

an entry

in main

section

of a

file

MISCELLANEOUS

MAIN

NEXT ENTRY

Figure 2. Format of A File

■41-

STANDARD DATA FOR AN ENTRY

73 24 27 28 42 43 46 47 58 59 62 63

SIZE OF OBJECT
IN BITS FLAGS

PV OF
OBJECT

PV
FLAGS

DEAD SPACE
BIT COUNT FLAGS D

9 V 27 28 31 32 46 47 50 51 63

D
FLAGS

BEGINNING OF
VARIABLE DATA
(RELATIVE TO END)

FUGS
STANDARD
CLASSIFICATION
PV

FLAGS
ALTERNATE
CLASSIFICATION

«»1 2 5 6 7 1(9 11 34 35 38 39 63

FLAGS 0 FLAGS
LENGTH OF SLOP

IN BITS FUGS START OF FIXED DATA

SIZE OF OBJECT

PV OF OBJECT

DEAD SPACE BIT COUNT*

D

BEGINNING OF
VARIABLE DATA

The size is actually in words since every entry starts
at a full word boundary. The flags are always 0.

PV in object roll.

To indicate when garbage collection is needed.

Delete bit. If set, this entry is deleted.

The number of bits used for variable data.

STANURD CUSSIFICATION PV of security classification of data in this entry.

ALTERNATE CUSSIFICATION PV of security classification of data in thi» entry
" with V flag set.

0 *

LENGTH OF SLOP

Override bit.

Number of bits remaining unused in the entry.

STANURD DATA FOR A REPETITION

15 16 19

NAME PV

D

NAME PV

FUGS

FUGS

Delete bit for the repetition.

PV of name of this repetition if named repeating group.

Bit 17=1 if no name or if unnamed repeating group.

Figure 3. Format of Standard Data

-42-

(a) FP - Floating Point (64 bit standard 7030 format).

Such data is guaranteed to start at a full-word

boundary -- otherwise it would be declared as

compressed floating point (q.v.).

(b) CFL - Compressed Floating Point*

An VFL quantity which, when placed in the

accumulator at the prescribed offset,

becomes a floating point quantity.

(c) VFL ■ Integer (never greater than 48 bits long).

(d) L = Logical (or roll valued)

The values of these properties are principal

values in the specified roll, i.e., a 15-bit

integer.

Other data types are variable in size and must therefore be

pointed to by a 64-bit pointer (see 1.6 on page 47).

(a) NQV ■ Numeric Query Valued*

LQV = Logical Query Valued

The value of each of these properties is

computed by retrieving and honoring an

associated query. NQV and LQV always start

at a full-word.

(b) RAW - Raw data (an arbitrary string of bits).

Raw data always starts at a full-word.

(c) NRG = Named Repeating Group

URG ■ Unnamed Repeating Group

-43-

1.4 REPEATING GROUPS

Repeating groups are sufficiently complicated to require an

elaborate description. A repeating group may be considered

as a named collection of properties. A set of values

comprising one value for each property in the group is

called repetition. A repeating group may have an arbitrary

number of repetitions. The properties included in a

repeating group may be any of the seven types (including

other repeating groups). A variable data type in a

repeating group will, of course, be pointed to yet again --

in this system, to access data, a sequence of pointers

corresponding to the number of degrees of variability must

be used.

A named repeating group has a property called 'NAME' and

hence each repetition may have a name.

One repetition in a repeating group consists, then, of a

fixed part which contains fixed properties and pointers

to variable properties, and variable parts pointed to by

the pointers. The following rules hold.

All repetitions are within the Variable Data portion of an

entry. The pointer to the first repetition is in the Fixed

section when the repeating group property is 'prime1 level,

(i.e.., not itself in a repeating group). There will never

be a discontinuity within the fixed section of a repetition.

-44-

1.4.1 Format of a Repetition

(a) Standard Data

Figure 3 shows the format of the standard data. If

the repeating group is unnamed, the NAME value will

be deleted and there will be no NAME property in the

property roll.

(b) Fixed Data

The fixed data for a repetition is exactly like fixed

data for an entry. The location of fixed properties

in a repeating group are specified in the property

roll as relative to the start of a repetition rather

than an entry. As noted above, there will never be

a discontinuity in the fixed data for a repetition.

If a repeating group contains any floating point

property, each repetition will begin at a full-word

boundary.

(c) Variable Data

Variable data has the same use as in an entry.

1.5 FLAGS

Each property has a sign and three flag bits. In fixed length

properties these are the last four bits. Variable length

properties have flag bits in the first pointer (see 1.6 on

page 46). These bits are used as follows:

bit 0 (S) Sign bit. Always 0 in nonnumeric properties,

bit 1 (T) If set, this value has been deleted or is

nonexistent,

bit 2 (U) ^Override bit. Intended to prevent

contamination of the data base during

checkout.

-45-

bit 3 (V) *If set, this value has the alternate

security classification found in

standard data for the entry.

1.6 POINTERS TO VARIABLE DATA IN FILES

The described pointer is used for all pointed to data

(viz., Repeating Groups, Query Valued*, and Raw Data

Properties) both as original and continuation pointers.

Data Location (B , 25, 4) Count (bits)
Value

Flags
0TUV

(BU, 18)
Location of
Continuation
Pointer (BU, 211

All pointers are 64 bits long (but need not start at a

word boundary). These 64 bits are divided into three

fields:

Data Location bits 0-21 where bit 21 = 0

Flags used in the first pointer only with

same meaning as for other properties

Count -bits 25-42

Continuation
Pointer Location bits 43-63

The location field points to the beginning of the data

relative to the beginning _of the next object; in other

words, the location pointed is:

ORIGIN OF ENTRY + LENGTH OF ENTRY - VALUE OF POINTER

LOCATION FIELD.

This means the values in pointers do not change when the

length of the entry is increased.

-46-

FIRST STREAM FORMAT

17 18 23 24 27 28 45 46 M
Hash Code Pointer
to Name in Second
Stream

PV
FLAG

Pointer to First
Name in Second
Stream

Pointer to First
Subval in Second
Stream

18
-^ ^

indexed by hash code

18 18

indexed bv PV

SECOND STREAM FORMAT

(A) NAME ELEMENT

4 11 12 293031 45 46 49 50 616263
käme
FLAG

Name
Character
Count

Alternate or
Ambiguity Link 1 PV

PV
FLAG

Element
Tag P A

|Name Tag Synonym Link Subval Link
\

Start of Name J

(B) SUBVAL ELEMENT

11 12

Subval Tag Next Subval Link

m mi 1Z3J3241 ff Subva!
)| Char- |
acter
Count

Start of Subval

P = 1

A =• 1

D = 1

R - 1

Name is a prefix

Name is ambiguous

Subval deleted

Subval is recirculation

Figure 4. Format of a Standard Rol I

-47-

2.1 FORMAT OF A ROLL

The format of a roll is illustrated in Figure 4.

2.1.1 Standard Roll

The standard roll consists of two streams. The first has

a dual use. It may be accessed by the hash code for a

name and points to the list of names in stream 2. It may

also be accessed by PV and points to the location of names

and subsidiary values (subvals) in stream 2. The second

stream contains names and subvals. The ambiguity link

chains elements together which have the same name. An

element is all the data associated with one PV. The

synonym link chains multiple names for the same element.

The alternate link chains names which map into the same

hash code.

2.1.2 Special Rolls

Frequently a few rolls have a special format and are called

special rolls. A special roll has the same format as a

standard roll with the addition of a third stream con-

taining subvals arranged in order of PV, with a fixed number

of words per subval. The number of words and the fields

are different for each roll. This third stream is called

a pointer set and all pointer sets reside in core during

system operation to provide rapid access to the subval

information.

-48-

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification of title, body of abstraft und indexing annotation must he entered when the overall report is classified)

I ORIGINATING AC Tivi TV (Corporate author)

The MITRE Corporation
Bedford, Massachusetts

2a. REPORT SECURITY CLASSIFICATION

Unclassified
2b. GROUP

3 REPORT Tl TLE

A DESCRIPTION OF THE INTERNAL OPERATION OF THE ADAM SYSTEM

« DESCRIPTIVE NOTES (Type ol report and inclusive dates)

N/A
5 AUTHOR(S) (First name, middle initial, last name)

Clapp, Judith A.

6 REPORT DATE

August 1967
7a. TOTAL NO. OF PAGES

54
7b. NO. OF REFS

0
8a. CONTRACT OR GRANT NO.

AF 19(628)-5165
b. PROJEC T NO.

502F

9a. ORIGINATOR'S REPORT NUMBER(S)

ESD-TR-67-372

96. OTHER REPORT NO(S> (Any other numbers that may fee assigned
this report)

MTR-276

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

II SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Deputy for Command
Systems, Computer and Display Division;
Electronic Systems Division, L. G. Hanscom
Field, Bedford, Massachusetts

13. ABSTRAC T

This report summarizes the internal operation of the ADAM system.
It describes the organization of functions among the system routines. Appendix I
lists the sizes of the primary routines. Appendix H describes the internal format
of ADAM files and rolls.

DD,FN°ORVM
651473 UNCLASSIFIED

Security Classification

UNCTASSTFTFD
Security Classification

KEY wo ROS
L E ' WT

COMPUTER SYSTEMS

ADAM

Internal Operation, Description

System Routines, Organization of
Functions

UNCLASSIFIED
Security Classification

